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Abstract

We have classified a tau function for the hypergeometric solutions of the
Painlevé VI equation constructed by Shah and Woodhouse (2006 J. Phys.
A: Math. Gen. 39, 12265–9) through twistor methods. We have shown that
the tau function is the product of a Toeplitz determinant and a power of the
time variable t. In a suitable trivialization of the twistor bundle, the symbol of
this Toeplitz determinant is the minus of the off-diagonal entry in the patching
matrix. The method can also be applied to other solutions obtained from the
Ward ansätze.

PACS numbers: 02.30.Gp, 02.30.Ik, 02.40.Tt
Mathematics Subject Classification: 32L25, 34M55

1. The twistor reduction of the anti-self-dual Yang–Mills equation and

the Painlevé VI equation

Many integrable systems can be obtained from reductions of other integrable systems and
inherit the integrability from their mother systems. A large class of integrable systems can be
represented as reductions of the anti-self-dual Yang–Mills (ASDYM) system via conformal
vector fields [4]. In particular, the six Painlevé equations are equivalent to reductions of the
ASDYM equation through the action of three conformal Killing vectors. This opens up a
new way of studying the Painlevé equations through twistor theory [6, 15, 16]. In [6], special
solutions of the Painlevé VI equation were constructed in a simple way through the use of
the Ward ansätze in twistor theory. In this paper, we will classify the tau function of these
solutions in terms of Toeplitz determinants. We will show that the tau function of a solution
to the Painlevé VI constructed from a twistor bundle with a patching matrix of the form (2.1)

Tk(λ, μ, ζ ) =
(

ζ k φ

0 ζ−k

)

is given by f (t)Dk[−φ], where f (t) = C1t
−k if |t | < 1 and f (t) = C2 if |t | > 1 for some

constants C1 and C2, while Dk[−φ] is the k-dimensional Toeplitz determinant with the symbol
−φ. The result is stated in theorem 2. The discontinuity in the expression reflects the fact that
the Toeplitz determinant has a singularity when |t | = 1.
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Let us consider the complexified Minkowski space CM with complex coordinate
(w, w̃, z, z̃) and metric

d s2 = 2 (dz dz̃ − dw dw̃) .

A connection

d + � = d + �w dw + �w̃ dw̃ + �z dz + �z̃ dz̃ (1.1)

on CM is anti-self-dual if the connection is flat on self-dual null planes (α-planes) whose
tangent spaces are spanned by the vector fields

l = ∂w − ζ∂z̃, m = ∂z − ζ∂w̃

for some complex number ζ . If, in addition, the connection is invariant under the action of
the following conformal Killing vectors

X1 = −z∂z − w∂w, X2 = −w̃∂w̃ − z̃∂z̃, X3 = z∂z + w̃∂w̃, (1.2)

the ASDYM equation is equivalent to the Painlevé VI equation

d2y

dt2
= 1

2

(
1

y
+

1

y − 1
+

1

y − t

) (
dy

dt

)2

−
(

1

t
+

1

t − 1
+

1

y − t

)
dy

dt

+
y(y − 1)(y − t)

t2(t − 1)2

(
α +

βt

y2
+

γ (t − 1)

(y − 1)2
+

δt (t − 1)

(y − t)2

)
, (1.3)

where α, β, γ and δ are some constants. In terms of the spacetime variables, t = z̃z
ww̃

. The
relation between y and the connection d + � can be found in chapter 7 of [4].

In this case, the ASDYM condition is equivalent to isomonodromic deformations of the
system of linear ODE [6]:

dg

dζ
=

(
A + B̃

ζ + r
+

Ã + B

ζ + s
− Ã + B̃

ζ

)
g, (1.4)

where r = w
z̃
, s = z

w̃
, A, Ã, B and B̃ are functions of t only. The Painlevé VI equation can be

recovered by fixing the values of w, w̃ and z̃ to be w̃ = w = z̃ = 1 and let z = t . Different
choices of the variables will result in gauge equivalent systems of ODE [4].

2. The Ward ansätze and hypergeometric solution of Painlevé VI

A classical result of Penrose and Ward [11] identifies the solutions of the ASDYM equation
with holomorphic vector bundles in a neighborhood P of a line x̂ ∈ CP

3 that is trivial on the
line. Let λ, μ be λ = w + ζ z̃ and μ = z + ζ w̃. The Ward ansätze [12] is an ansätze that uses
a patching matrix of the vector bundle of the form

Tk(λ, μ, ζ ) =
(

ζ k φ

0 ζ−k

)
(2.1)

to construct solutions of the ASDYM equation, where k is some non-negative integer and φ

is a function of λ, μ and ζ only. The key is to make a Birkhoff factorization of the patching
matrix

T (λ, μ, ζ ) = H−1
∞ H0 (2.2)

at each fixed spacetime point z, z̃, w and w̃, where H∞ is holomorphic in a neighborhood V∞
of ζ = ∞ and H0 is holomorphic in a neighborhood V0 of ζ = 0. The connection (1.1) can
then be recovered by evaluating H∞ at ζ = ∞ and H0 at ζ = 0 [4, 10].

In [6], invariant solutions corresponding to the Ward ansätze were constructed from
solutions of hypergeometric equations. We shall see that these solutions correspond to the
solutions whose tau functions are given by Toeplitz determinants with symbol −φ.
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3. Toeplitz determinant and Ward ansätze

The factorization problem can be thought of as a Riemann–Hilbert problem and is related to
the Toeplitz determinant with the symbol φ. Recall that a k-dimensional Toeplitz matrix with
symbol φ is a matrix Tk(φ) with entries

(Tk(φ))jk = φj−k, 0 � j, k � k − 1,

where φl are the Fourier coefficients of φ:

φl = 1

2π

∫ π

−π

eilθφ(eiθ ) dθ.

Let us now state a result of Deift [1]. (See also earlier results of Widom [13, 14]).

Theorem 1. Let ϕ(t) be the symbol of the k-dimensional Toeplitz determinant Dk[ϕ] that
depends on a parameter t, then

d log Dk[ϕ]

dt
=

∫
S1

(1 − ϕ)−1 dϕ

dt

2∑
j=1

F ′
j (ζ )Gj (ζ ) dζ, (3.1)

where Fj (ζ ) and Gj(ζ ) are the following:

(F1, F2)
T = M+(ζ )(ζ k, 1)T ,

(G1,G2)
T = 1 − ϕ

2πi
M−T

+ (ζ )(ζ−k,−1)T .
(3.2)

and the ′ denotes differentiation with respect to ζ .
The matrix M+(ζ ) is the left-hand-side boundary value of the solution to the following

Riemann–Hilbert problem

(1) M(ζ ) is analytic in ζ ; on C/S1,

(2) M+(ζ ) = M−(ζ )

(
ϕ −(ϕ − 1)ζ k

ζ−k(ϕ − 1) 2 − ϕ

)
, ζ ∈ S1 (3.3)

(3) M(ζ ) = I + O(ζ−1), ζ → ∞,

where S1 is the unit circle that is oriented counter-clockwise.

The solution of the Riemann–Hilbert problem (3.3) and the Birkhoff factorization are related
in the following way. Let H0 and H∞ be

H0(ζ ) = M(ζ)

(
ζ k −1
1 0

)
,

H∞(ζ ) = M(ζ)

(
1 0

ζ−k 1

)
.

(3.4)

Then H0 and H∞ solves the Birkhoff factorization (2.2) with φ = −ϕ.

4. The tau function of the isomonodromic problem

The tau function of a general isomonodromic problem was introduced by Jimbo, Miwa and
Ueno [2, 3]. The logarithmic derivative of the tau function has poles at the points z, z̃, w̃, w

in which the Birkhoff factorization problem is not solvable. It is an important object that is
used to compute correlation functions in quantum field theory and is also related to Fredholm
determinants and Grassmannian in the studies of integrable systems. In recent years, it also

3
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appears as local eigenvalue correlation functions in the study of random matrix theory [7–9].
In [5], the isomonodromic tau function was expressed in terms of the twistor data. In this
section we shall use the result of [5] to establish a link between Toeplitz determinant and the
tau function for the Ward ansätze.

In [6], it was shown that the Higgs fields in (1.4) are conjugate to

Ã + B ∼ −b

2
σ3, A + B̃ ∼ −1

2
(a − c + 1) σ3,

Ã + B̃ ∼ 1

2
(b − c + 1 − k) σ3, A + B ∼ 1

2
(a + k) σ3,

(4.1)

where ∼ means ‘conjugate to’ in the above.
By using the general theory of isomonodromic tau function in [5], we can express the tau

function of the isomonodromic problem (1.4) in terms of H0 and H∞,

d log τ

dt
= −b

2
Res ζ=−t Tr

(
H−1

0

dH 0

dζ

σ3

ζ + t

)
, (4.2)

where we have chosen s = z = t and w = w̃ = z̃ = 1 in (1.4).
Let us see how this derivative is related to the k-dimensional Toeplitz determinant with

symbol −φ.

5. Tau function and Toeplitz determinant

Let us first define Y0 and Y∞ to be the following functions in V0 and V∞:

Y0 = H0 (−φ)
σ3
2 ζ− kσ3

2 , Y∞ = H∞(−φ)
σ3
2 ζ− kσ3

2 , (5.1)

then Y0 and Y∞ satisfy the following in V0 ∩ V∞,

Y0 = Y∞

(
ζ k ζ k

0 ζ−k

)
. (5.2)

By identifying ϕ = −φ in theorem 1 and using (3.4), we see that the Toeplitz determinant
with symbol −φ satisfies the following:

d log Dk[−φ]

dt
= 1

2π i

∮
S1

d log φ

dt
Tr

(
Y ′

0

(
0 − 1

0 0

)
Y−1

0

− 1

2
(φ′φ−2 + kζ−1)

(
0 1
0 0

) )
dζ

= 1

2π i

∮
S1

d log φ

dt
Tr

(
Y ′

0

(
0 −1
0 0

)
Y−1

0

)
. (5.3)

The following observation was due to A Its. First let us rewrite the above expression as

d log Dk[−φ]

dt
= 1

4π i

∮
S1

d log φ

dt
Tr

(
Y−1

0 Y ′
0σ3

)

+
1

2π i

∮
S1

d log φ

dt
Tr

(
Y−1

0 Y ′
0

(− 1
2 −1

0 1
2

))
. (5.4)

Note that since (
ζ k ζ k

0 ζ−k

)(− 1
2 −1

0 1
2

) (
ζ k ζ k

0 ζ−k

)−1

= −σ3

2
, (5.5)
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by using (5.2) and (5.5) in (5.4), we obtain

d log Dk[−φ]

dt
= 1

4π i

∮
S1

d log φ

dt
Tr

(
Y−1

0 Y ′
0σ3

)
dζ

− 1

4π i

∮
S1

d log φ

dt

(
Tr

(
Y−1

∞ Y ′
∞σ3

)
+

2k

ζ

)
dζ. (5.6)

By using (5.1), we see that

d log Dk[−φ]

dt
= 1

4π i

∮
S1

d log φ

dt
Tr

(
H−1

0 H ′
0σ3

)
dζ

− 1

4π i

∮
S1

d log φ

dt

(
Tr

(
H−1

∞ H ′
∞σ3

)
+

2k

ζ

)
dζ. (5.7)

Since w̃ = 1, z = s = t and φ is a function of λ, μ and ζ only, we have,

∂μφ = ∂tφ = − b

ζ + t
φ. (5.8)

If |t | > 1, then we can deform the unit circle S1 in the first term of (5.7) into a close loop
around ζ = −t and the unit circle in the second term into a close loop around ζ = ∞ to obtain

dDk[−φ]

dt
= −b

2
Resζ=−t Tr

(
H−1

0 H ′
0

σ3

ζ + t

)
− b

2
Resζ=∞ Tr

(
H−1

∞ H ′
∞

σ3

ζ + t

)
. (5.9)

Since dH∞
dζ

= O(ζ−1) at ζ = ∞, the above equation becomes

d log Dk[−φ]

dt
= −b

2
Resζ=−t Tr

(
H−1

0 H ′
0

σ3

ζ + t

)
= d log τ

dt
. (5.10)

On the other hand, if |t | < 1, then the first integral in (5.7) vanishes and we obtain

d log Dk[−φ]

dt
= −b

2
Resζ=−t Tr

(
H−1

∞ H ′
∞

σ3

ζ + t

)
− k

t
= d log τ

dt
− k

t
.

(5.11)

>We have therefore shown the following theorem.

Theorem 2. The tau function of the hypergeometric solutions of the sixth Painlevé equation
obtained from the Ward ansätze (2.1) is given by

log τ =
{
C1t

−kDk[−φ], |t | < 1;
C2Dk[−φ], |t | > 1,

(5.12)

where C1 and C2 are some constants and Dk[−φ] is the k-dimensional Toeplitz determinant
with the symbol −φ.

Since the solution of the Painlevé VI equation is determined by its tau function, the above
theorem classifies the hypergeometric solutions obtained in [6].

6. Concluding remark

We have classified the hypergeometric solutions of Painlevé VI obtained in [6] in terms of
Toeplitz determinant. The method we used does not restrict to these solutions and can be
applied to any solution constructed through the Ward ansätze. In particular, since all the six
Painlevé equations can be obtained as reductions of the ASDYM equation, one can construct
solutions to other Painlevé equations through the use of the Ward ansätze and theorem 2 will
remain true for all these solutions.
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It is worth mentioning that while the Ward construction solves the Birkhoff factorization
problem (2.2) through inversion of a k-dimensional Hankel matrix (the matrix M in
theorem 8.2.2 of [10]), we have represented the solutions through the k-dimensional Toeplitz
determinant with symbol −φ. This provides an alternative way of constructing solutions
to the Ward ansätze via inversion of Toeplitz matrix and may provide new insights into the
understanding of the relation between the Ward construction and the inversion of operators.
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